On the extent of intramolecular hydrogen bonding in gas-phase and hydrated 1,2-ethanediol.

نویسندگان

  • Deborah L Crittenden
  • Keiran C Thompson
  • Meredith J T Jordan
چکیده

We investigate the quantum dynamical nature of hydrogen bonding in 1,2-ethanediol and monohydrated 1,2-ethanediol using different levels of ab initio theory. Global full-dimensional potential energy surfaces were constructed from PW91/cc-pVDZ, B3LYP/cc-pVDZ, and MP2/cc-pVDZ ab initio data for gas-phase and monohydrated 1,2-ethanediol, using a modified Shepard interpolation scheme. Zero-point energies and nuclear vibrational wave functions were calculated on these surfaces using the quantum diffusion Monte Carlo algorithm. The nature of intra- and intermolecular hydrogen bonding in these molecules was investigated by considering a ground-state nuclear vibrational wavefunction with reduced complete nuclear permutation and inversion (CNPI) symmetry. Separate wavefunction histograms were determined from the ground-state nuclear vibrational wavefunction by projection into bondlength coordinates. The O-H and O-O wavefunction histograms and vibrationally averaged distances were then used to probe the extent of intra- and intermolecular hydrogen bonding. From these data, we conclude that gas-phase ethanediol may possess a weak hydrogen bond, with a relatively short O-O distance but no detectable proton delocalization. Monohydrated ethanediol was found to exhibit no intramolecular hydrogen bonding but instead possessed two intermolecular hydrogen bonds, indicated by both shortening of the O-O distance and significant proton delocalization. The degree of proton delocalization and shortening of the vibrationally averaged O-O distance was found to be dependent on the ab initio method used to generate the potential energy surface (PES) data set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational study of the intramolecular proton transfer between 6-hydroxypicolinic acid tautomeric forms and intermolecular hydrogen bonding in their dimers

This paper is a density functional theory (DFT) calculation of intramolecular proton transfer (IPT) in 6-hydroxypicolinic acid (6HPA, 6-hydroxypyridine-2-carboxylic acid) tautomeric forms. The transition state for the enol-to-keto transition is reported in the gas phase and in four different solvents. The planar and non-planar dimer forms of 6HPA keto and enol, respectively, were also studied i...

متن کامل

Isomerism and Hydrogen Bonding in the Cis-enol Forms of 1-(n-pyridyl)butane-1,3-diones: A Theoretical Study

Molecular structure, isomerism, conformational stability and intramolecular hydrogen bonding (IHB) of cis-enol forms of 1-(n-pyridyl)butane-1,3-diones (nPBD) (n = 2, 3, or 4) have been investigated by means of density functional theory (DFT) calculations. Energy differences for all possible nPBD cis-enol forms of isomers with respect to the most stable form of the correspondin...

متن کامل

A Theoretical Charge Density Investigation on Histidine-Histidine Dipeptide in Gas Phase

In the present work, an extensive theoretical calculation study on Histidine-Histidine dipeptide in gas phase is done by using DFT method with Gaussian 98 program. Through investigations on the molecular geometries of this molecule it is found that there is six rings in the molecules not two rings. The presence of four intramolecular hydrogen bonds is responsible for the formation of additional...

متن کامل

A theoretical study on quadrupole coupling parameters of HRPII Protein modeled as 310-helix & α-helix structures

A fragment of Histidine rich protein II (HRP II 215-236) was investigated by 14N and 17O electric field gradient, EFG, tensor calculations using DFT. This study is intended to explore the differences between 310-helix and α-helix of HRPII both in the gas phase and in solution. To achieve the aims, the 17O and 14N NQR parameters of a fragment of HRPII (215-236) for both structures are calculated...

متن کامل

Theoretical study of structure of the 1,2-disubstituted derivatives of ethane. I. Conformations of 1,2-ethanediol, 2-aimnoethanol, and 1,2-ethanediamine

All staggered and eclipsed conformations of 1,2-ethanediol, 2-aminoethanol, and 1,2-ethanediamine have been studied by the semiempirical CNDO/2 method with optimization of structural parameters. The conformations of the -OH and -NH2 functional groups have been also investigated. The results obtained are compared with available experimental and theoretical data. The energy of particular conforma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 109 12  شماره 

صفحات  -

تاریخ انتشار 2005